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Abstract

Using a combination of population- and individbalsed analytical approaches, we
provide a comprehensive examination of genetic connectivity of DungenesS€anabr
magisteryalong—1,200 km of the California Current System (CCS). We sampled individuals
33 sites in 2012 to establish a baseline of genetic diversithiiaratchalpopulation genetic
structure and then assessed ingeamual variability in our estimates by sampling again in 2014.
Genetic diversityshowed little variation among sites or across years. In 2012, we observed
weakgenetic differentiation among sitdss§ range = -0.005 — 0.0149llowing a pattern of
isolation by distance (IBD), and significantly high relatedness among individithla wine
sampling sitesin 2014, pairwisé& st estimates were lowdF st range =0.014 — 0.007)there
was no spatialiautocorrelaticamd fewer site had significant evidence mflatednessBased on
these findingsywe propose that inter-annual variation in the physical oceanographior®odi
the CCS influence larval recruitment and thus gene flow, contributing tcainteral variation in
population genetic structurestimatef effective population size\g) werelarge in both 2012
and 2014. Togetheour resultssuggest that Dungeness crab in the CCS may constisuigla
evolutionary-population, though geographically limited dispersalteeisLan ephemeral signal of
isolation by distancd-urthermoreour findings demonstrate that populations of marine
organismsnay be susceptible temporal changes in population genetiacture over short time
periods, thus inteannual variability in population genetic measures should be considered.

I ntroduction

Understanding the spatial scales over which populations interact is a fundamentally
important theme of marine conservatemd ecology. Nevertheless, estimating population
connectivity, or thexchange of individuals among populatioinsthe marine environment can

be a difficult task, since dispersal primarily occurs during a planktonic lpngae in many

species (Cowen et al. 2007; Cowen and Sponaugle 2009). In lieu of efficient direct methods (e.g.

mark-recapture, telemetry taggingyenetic markers have become an increasingly popular
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indirect tool for evaluating connectivity (Hellberg et al. 2002; Waples and ®#gg006). As a
result, delineation of population suinits and the design of management strategies has relied
extensively on estimates of genetic connectivity (i.e. the effect of gene flow orapopsi
(Palumbi“2003; Palsbgll et al. 2007; Lowe and Allendorf 2010).

Estimates of genetic connectivity have traditionally been inferred from analyses that
assess populatioregetic structure at a single point in time, providing a snapshot of the amount
of diversity.(e.g. heterozygosity, allelic richness) and degree of diffeienti@.g.Fsr, Gst, D)
within and@among populations (Slatkin 1985; Waples and Gaggliotti 2006; Lowe and Allendorf
2010). Using'this approach, numerous studies have revealed an array of differenpapetis
of population genetic structure which often contradict the assumption that a lengtipg psval
duration leadstto strong genetic connectivity (Weersing and Toonen 2009). Others have
demonstratedsthe advantage of complementary, ‘individas¢d’ measures such as kinship
(Palsbgll et al. 2010; lacchei et al. 2013; Selwyn et al. 2016; Treske et al. 2016y4d eteal.

2017), parentage analyses (Jones et al. 2005; 2009; Christie et al. 2010; Pusack et al. 2014;
Christie et al. 2017) and assignment tests (Manel et al. 2005; Thomas and BeB&@ds3an et

al. 2015;Christie et al. 2017). These analyses focus on how genetic variation withinipopulat
is distributed among individuals, and have contributed to a growing paradigm that locatpsoce
(e.g. kin‘aggregation, retention) play important roles in regulating genetic caeityesdbngside
large scale processes (e.g. dispersal) (Chest 2010; Underwood et al. 2012; Pusack et al.
2014; Klein et al. 2017).

Despitethe wealth of knowledge surrounding factors that influence genetic connectivity
in the marinesenvironment, including evolutiongarpcesseée.g. gene flow, naturaklection)
(Slatkin=1:985Hillbish 1996;Hellberg 2009; Nielsen et al. 2009; Nayfa and Zenger 2016),
ecologicalprocessesge.g. dispersal, recruitment) (Weersing and Toonen 2009; Selkoe and
Toonen 2011; Chust et al. 2016), and environmesatahblese.g.habitat continuity, circulation)
(Selkoe et al. 2008; Galindo et al. 2010; White et al. 2010; Selkoe et a), 26& have been
proportionately few studies that evaluate temporal trends in population genetiarstr This
disparity is somewhat surgimg, sinceconservation and management strategies that are based on
knowledge of population genetic structure are inherently reliant on the assumptisunctina

patterns are temporally consisted$sessing inteannual variation in population genetic
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measures provides a means tomtoring population responses to a changing environment or
anthropogenic pressures such as harvest or habitat loss (Schwartz et aS20MIing at

multiple time points can also provide an analytical advantage over singiesstody designs
since population genetic measures of ‘high gene flow’ marine organisms areaifeunded by
greater statistical uncertainty due to the elevated influence of small biases associated with
sampling design, marker choice, or conformancsgatstical assumptions (Waples 1998). For
instance, Knutsen et al. (2011) assessed genetic connectivity of Atlanti@aohs (norhua) in
coastal Norwayyand observed very weak, yet significant, levels of population genetigstruc
(Fst < 0.01),"bringing to question the biological relevance of such minute genetic differences.
However, the authors observed a consistent pattern of weak population gendticestrver a

ten year timesseries which emphasiteel importance of their findings. In contrasgyeral

studies havefound evidence foter-annual variation in population genetic structwiich as a
resultuncavered the interaction amogegnetic structure antemporally variablecological
processes such.as sweepstakes reproductive success aggrkgation (Hedgecock 1994a;
Christie et al: 2010 as well agphysical processes such as oceanographic conditions and ocean
circulation=patterns (Forin and Hoglund 2007; Hogan et al. 2012; Kamin et al. 2014; Klein et al.
2016; Pascual-et al. 201@)hese processes play an influential rolg@metic connectivity, but
would have gone undetected by only analyzing data from a single time point.

The majority of studiethat consider inteannual variability have employed single cohort
sampling designs that provide the fine scale resolution necessary for disentdrggling t
mechanisms of inter-annual variability, but failcapture variability in the population as a whole
(but see Pusack et al. 2014). Alternatively, evaluating mixed cohorts providestégisside
mechanismssofinter-annual variation, but more clarity on how inter-annual viyiabdenetic
connectivity (i.e. gene flow) influences genetic structure of the population ove(der findings
of Forin and Hoglund 2007; Hogan et al. 2010; Klein et al. 2016), whichhianag/ more direct
implications farfishery management.

The California Current System (CCS) is a lasgale oceanographic regime of the
northeastern Pacific Ocean which spans the North American coast from Vancouver Island, British
Columbia to the Baja California Peninsula, Mexico. The CCS is highly productiveugports a

wide ranging biodiversity of fishes and invertebrates. Population genetic structugawisors
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with planktonic larvae in the CCS are variable, ranging froradlwehich are genetically
homogenous across broad geographic ranges (Addison et al. 2008; Kelly and Palumbi 2010,
Sivasundar and Palumbi 2010), to those that are characterized by weak genetitidiftere
(Buonactcarsi‘et al. 2004; White et al. 2010; ket al. 2013), chaotic genetic patchiness
(Hedgecock 199 Selkoe et al. 2006; Selkoe et al. 20C@rnwell et al. 2016), or discrete
population genetic structure (Cope 2004; Kelly and Palumbi 2010; Sivasundar and Palumbi 2010;
Hess et al..201Sanders and Palumbi 2011). Despite well documented intra- and inter-annual
variation of physical oceanographic conditions within the CCS (reviewed in HickeBanas
2003; Rebstock 2003; King et al. 2011; McClatchie 2014) and the knowledge that these
conditions play a role in shaping genetic connectivity (White et al. 2010; laztchle2013),

their influemeeon temporal patterns of genetic connectivity is poorly understood.ovdigre

our knowledge no population genetic studyr@trine fishes or invertebratasthe CCS has
evaluated(inteannual variation in genetic connectivity of a mixed-cohort population.

The Dungeness cragncer magister) is an iconic CCS species, and supports the most
valuable commercial fishery along the west coast of theetistates (Van Voorhees et al. 2016).
The commerecial fishery in the CCS is restricted to only males of carapace widths greater than 158
mm, during alimited entry seastmatprimarily occurs inrwinter months (i.e. avoiding the
molting cycle). Fishing @ssure is immense, harvesting an estimated 90% of legal sized male
crab on an annual basis (Methot and Botsford 1982). Dungeness crab in the CCS have been
considered a single open population for management purposes, though knowledge of population
connectivity or stock delineation to guide decision malksrgcking Previous population genetic
studies of Bungeness crab have provided evidence for genetic structure in partiefigenc
waters of«British Columbia (Beacham et al. 2008), as well as homogat@@ity 585 km of the
Oregon coast and differentiation between the Oregon coast and two sites in Biitistbi@

(O’'Malley et al. 2017). Further, there is evidence of reduced connectivity befiive®eness

crab inhabiting partially enclosed watére. Puget Sound, Washington) as compared to the open
coast (Jackson and O’Malley 2017). These findings demonstrate the need to examine genetic
connectivity within this species at a coast wide scale.

In this study we use Dungeness crab in the CCS as a modeh $gstevestigate inter

annual variation in population genetic structure of a widely distributed maringebrege. Our
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primary objectives were to 1) characterize genetic variation of Dungenbdtimaghout ~1,200
km of the CCS and 2) evaluate interaual variability in population genetic structure. Using both
population-(e.g. AMOVA, Fst) and individualbased analysgg.g. relatedness, assignment
analysis)within“a hierarchal analytical framework, we first establish a baselipepulation
genetic structure in 2012 to test the null hypothesis of panmixia. We then testfanntial
variability by repeating these analyses in 2014. Lastly, we discuss our findingsngagmaetic

connectivity of this species in relation to changing oceanographic conditions.
M ethods
Study species

The Dungeness crab is distributed continuously from the Pribilof Islands, AlaSkat@
Barbara, CalifornigRasmuson 2013). In this study, we focus on the CCS from northern
Washington‘téHdalf Moon Bay, California (Figl). Dispersal primarily occurs during the
planktonic larval phase, as adult migratiomshe CCStend to be localized on a scale of 20-50
km (Snow and Wagner 1965; Gotshall 1978; Collier 1983; Diamond and Hankin 1985;
Hildenbrand et:al. 2011). The planktonic larval phase lasts approximately four randths
consists'of-fiveszoeal stages and one megalopal stage (Poole 1966; Moloney et al. 1§94). Ea
stage zoea ameleased during winter months, and transported northward and seaward by the
Davidson Current (Lough 1976; Riley 1988j}.the time of thé spring transitiohfrom
downwelling to upwelling conditionshe Davidson current weakens and late stage zoea are
typically found off the continental shelf in the southward flowing California Curkésite, zoea
molt into megalopae and migrate inshore to seldenfeson and Phillips 198&viewed in
Rasmusen«2013). The timing of megalopae settlement is known to vary both within years and
among years, and the magnitude of larval recruitment has been correlated with opdéamogra
indices such as the timing of the spring transition, Pacific Decadal Oscillation (PDO), and the
amountof upwelling during the settlement season (i.e. spring and summer) (Shanksgnat Roe
2007; Shanks et al. 2010; Shanks 2013). These indices relate to variation in the wind-forced,
along-and crossshelf circulation thought to influence larval trajectories, and likely feme

Sample colleedn
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In collaboration with the Washington, Oregon, and California Department of Fish and
Wildlife agencies (WDFW, ODFW, and CDFW, respectively) and the commercial fishing fleet,
Dungeness crab were collected in November 2012 and 2014 during BaferPe-Season Test
Fishery (Pacific States Marine Fisheries Commission 2@4g) 1). A string of six pots was
fished at three depths (15 m, 30 m, 45 m) along 33 latitudinal transects. Each transect represents a
single sampling site. Muscle tissue was sampled from adult females aledjalbized males(

158 mm carapace width) by removing a hind walking leg and preserving it in 95% ethanol. Legal
sized males were not available for genetic analysis since they were rétaithedtest fisherjor

meat recovery. Prior to release, carapace width was recorded for individuals sampled in
Washington, The two most southern transects, Duxbury Reef and Half Moon Bay, were not
sampled in2014.

Wescollected tissue samples frdv= 4,041 crab in 2012 aridl= 1,804 crab in 2014.
Individuals were subsampled for genotyping by including all females, and randomlyrgglecti
males to achieve a sample size of up to 100 individuals per site (Table S.1, Supporting
Information). We genotyped a greater proportion of males (/&f#&n females22%) overall
though thissratio varied among sites. To evaluate the potential for sex bias inuttsrwes
conducted a_princlp componentganalysis (PCA) based on allele frequenaiemdividuals by
sex in the packagadegenéet(Jombat 2008) in R version 3.2.1 (R Core Team 2016) for both
2012 and 2014 (Benestan et al. 2016; Jackson and O’Malley.2@4& did not observe any
clustering among sexes in either year (Fig. S.1, &g Informatior), and thus chose not to

analyze males and females separately.
Laboratory methods

Genomic DNA was extracted from Dungeness crab muscle tissue as described by Ivanova
et al. (2006). DNA was amplified by Polymerase Chain Reaction (PCR) at 10 microsatellite loci
using previously developed oligonucleotide primers (Kaukinen et al. 2004; Toonen et al. 2004)
(Table S:2uSupporting Information). PCR was carried out in 6 pL reactions cogtasnmM
MgCl, 10 mM dNTPs, 10 pM forward and reverse primers, 5x colorless PCR buffer, SraéuL
polymerase, double distilled water (ddH20), and 1 uL of DNA template. Thermocycling
protocols consisted of 25-35 cycles at 95° C for 30 s, followed by 48 — 61.2° C for 30 s, and 70°
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for 45 s, with number of cycles and annealing temperature varying for each locus. Pii¢aramp
were electrophoresed on an ABI 3730XL DNA Fragment Analyzer and scored using
GeneMapper® software. Duplicate genotypes found within the same site in a given year were

assumedtobe‘error and removed.
Analysis of'genetiec diversity

Confermance to HardWeinberg proportions (HWRyasevaluatedor each locus using
the probability test option of the software program Genepop version 4.2 (Raymond and Rousset
1995; Rousset 2008). Linkage equilibrium was also evaluated for each pair of loci in all
populations separately using probability tests in Genepop. Markov chain pardoretesss of
HWP and linkage equilibrium included 1,000 dememorization steps and 100 batches of 1,000
iterations per batchralse Discovery Rate (FDR) correctiansng a = 0.05(Benjamini and
Hochberg'1995) were appliedRevalues of testfor linkage equilibrium The presence of null
alleles was estimated using the software program FreeNA (Chapuis and Estoups-2NA
estimates the frequency of null alleles in each sampling site across all loci, and calculates global
and pairwisé st estimates (Weir 1996) ugirobserved data with and without the addition of null
alleles. To assess the degree of departure from HWP, the inbreeding codffigiefWeir and
Cockerham 1984) was computied each si using the software program GENETIX version
4.02 (Belkhir 2004)We then tested #s values significantly deviated from zero by performing
10,000 permutationand applying FDR corrections (o = 0.05). Number of alleles per locus and
expected heterozygosity weaiso calculated for each site using GENETIX. Since sample sizes
varied considerably among sites, we also calculated allelic richnesd=$85idg version 2.9.3.2
(Goudet2001)"Allelic richness is the number of alleles per locus, corrected to the smallest
sampling sizeN = 10).

Analysisof population genetistructure
AMOVA andwairwise Fsr

To test for evidence of genetic structure, we performed an analysis of molecular variance
(AMOVA) (Excoffier et al. 1992) under the assumption of the infinite allele masle
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implemented in GenoDive version 2.0b23 (Meirmans et al. 2004; 2006). Within a hierarchal
framework, we assessed the variance in allele frequencies among individuals, sampling sites, and
regions in both 2012 and 2014. Regions wefédda priori based on prominent topographical
featureghatare assdated withstrong upwelling fronts and eddiesthe CCSe.g. Cape Blanco,
Cape Mendocino, and Point Arena) (Lagerloef 1992; Barth et al. 2000; Marchesiell2G&33I
Local oceanographic features are thought to strongly influence planktonicdepaisalPineda
et al. 2007)and as such, these physical prominences are also associated with biogeographic
breaks and population genetic structure in several CCS species (Cope 2004ndKelgtambi
2010; Hess et'al. 2011, Lotterhos et al. 2004ix. analysis consisted of four regions: 1) North
California'Current (North CC), 2) Mid California Current (Mid CC), 3) Ft. Bragg, arb4ith
California Current (South CC) (Fig. 1).

Follewing the AMOVA, we calculated pairwigest estimategd; Weir and Cockdram
1984) amang individuadampling sites and remis for both 2012 and 2014 usiB&ENETIX. Fsr
estimates were tested for significance by performing 10,000 permutations, and@ppid
correctionga = 0,05). When effective population size is larged genetidifferentiationis low,
there isja:greater amount of statistical uncertainty associated with measures of genetic divergence
(e.g.Fst) than.when genetic differentiation is greateal{nowski 2005) We assessed the
relationship between sample semedstatistical power for detecting genetic differentiation as
measured.b¥ st in our dataset using the simulation software POWSIM (Ryman and Palm 2006).
POWSIM uses observed sample sizes, the number of microsatellite loci, and allele frequencies at
each locus to simulate sampling of individuals from a given number of sub-populatioresvéhat h
diverged torasuseatefined level of genetic differentiatiok 7). POWSIM then tests for
significant-differentiation among samples using Fisher’s exact tespropertion of significant
tests afteriall'iterations (in this case 1,000) is the power to detect genetic differentiation at the
given value ofgy. Simulations based on observed allele frequencies indicated that there was a
high probability.of type | error whelast was very smallKst < 0.001). Based on further rounds
of simulations, we concluded that low statistical power was likeljpated to small sampleizes
atsome sites, and that at least 50 samples for each site were neededhighgdatistical power
(> 95%) to detect genetic differentiatioVe also evaluated how smaller sample siaeX014

influencedestimate®f Fst by resamplingpur 2012 datset usinggample sizesbserved in 2014
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and recalculating pairwidést estimates among sites 100 timéhenthe sample sizat a given

site waggreater in 2014 than 201&e did not resampland all individuals were included,;

Duxbury Reef and Half Moon Bay were not included in this analysis as they were onlygample
in 2012.

Spatial autocorrelation

To ‘evaluate the relationship between genetic differentiation and geographic pré&mi
both 2012 and«2014, we conducted a simple Manteligdst) pairwise matrices &fst estimates
and Euclidean'(i.e straight line) distance between sampling sites in GenoDive. Significance was
tested using /1,000 permutations. Significant Mantel tests cannot always bestetbgs
evidence of.iselation by distance (IBD) (Wright 1943), since abrupt (even random), non-
continuous.ehanges in genetic variation can still produce significant rédaitsn@ans 2012).
Furthermare, IBD may not be uniform throughout the entire the study range. To examine the
presence of IBD more closely, we constrdcéeMantel correlogram (Oden and Sokal 1986) in
GenoDive. This approached allows for a test of spatial autocorrelation at specific distances, and
clarifies,interpretation of Mantel results when correlation is weak. Distance observations were
divided into gven continuous, nooverlapping ‘distance classes’ which had ranges-0100,
121 — 240;241= 360, 361 — 480, 481 — 600, 601 — 720; antdkm (Table S.3, Supporting
Information).These seven distance classes were desigpn@adintain consistency the
geographic range of each class, while including a sufficient number of pairwise comparisons
within each class to accurately test for a correlation (EHiilzo et al. 2013). We then computed
Mantel's r (k;.Similar to Pearson’s correlation coefficiefd) the relationship betwedfst and
geographic,distance within each class, and constructed a correlogram by plottingsMani
the mean-geographic distance of each class (Oden and Sokal 1986; Diniz-Filho et al. 2013)
Mantel’s r for each distanceads was tested for significance using 1,000 permutations. We also
constructed distogram (i.e. a plot dfie mean of pairwisEsr estimates anthemean
geographic distancmong sites within each distance c)d&8niz-Filho et al. 2013jo illustrate
the trend of genetic differentiation among sites within each distance class

Lastly, since regional site groupings were based jgmori hypotheses regarding

topographical features, it is possible that regional boundaries may not repmesdndlogical
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boundaries, or genetic breaks. Instead, the presence of IBD can result in a patteetiof ge

structure which is misinterpreted as a genetic break (Meirmans 2012). We investigated the role of
IBD as a driver of regional geneticstture by conducting a &l Mantel test in GenoDive
(Smouse“etal™1986). A partial Mantel test is similar to a simple Mantel test, but controls for the
statistical influence of a third matrix. In the context of this study, we tested the correlation
between pairwis€ st estimate among sites and region membership, while accounting for
geographic. distance as a covariate. In other words, we asked: Are sites located within the same
region more similar than expected by chance, after we account for the geographic distance
between sitg?"To describe region membership, we constructed a pairwise matrix of 1s, when
sites were located within the same region, and 0s, when they were not (Meirmans B812). T

relationshipwas tested for significance using 1,000 permutations.
Assignment.tests

We calculated the proportion of individuals that could be correctly assignedregibe
in which they were sampled to further test the null hypothesis of panmixia. In asasignm
analyses, if a high proportion of individuals can be correctly assigned based onrtbgipgs,
there is evidence gfopulation genetic structure (Manel et al. 2005). We determined the
proportion of individuals that could be correctly assigned to the site or rggiolocation)in
which they. were sampled using the software program GENECLASS2 (Piry et al. 2004).
Assignment.was determined according to the Bayesian method of Rannala and Mounatin (1997)
as this method.been shown to petform frequency and distance based measu@s(€t et al.
1999). Individuals were excluded fromagationif the probability of their genotype occurring in
that sitewas below a threshold of 0.05 (i.e. Type 1 error), and assignedlaz#tionin which
their genotype had the highest probably afwrence Expectedrequencyprobabilitiesfor
genotypes withireachlocationwere based on a simulated distribution generated by the Monte-
Carlo resampling algorithm of Paetkau et al. (20043 (L,000). To avoid biased assignments,
individuals:being asgned were removed from their home region before calculating allele
frequencies for that region (Efron 1983).

Relatedness
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Relatedness analyses have been useful in disentangling biological processes contributing
to genetic differentiation (lacchei et al. 2013; Treske et al. 2016). We excilaktedness
Dungeness crab by computing the Lynch and Ritland (1999) relaticrwsfificient ¢) for each
pair of individuals using the paage ‘related’ (Pew et al. 2015)o validate our use of Lynch and
Ritland’s (1999) as a relatedness estimator, we conducted several rounds of simulations in
‘related’_usingLynch and Ritland’s (1999), the triadic likelihood estimator (Wang 2007), and
the dyadic likelihood estimator (Milligan 2003). During simulations, genotypes of individuals
were generated\based on the allele frequency distribution of our observed data and all
relationshipsvere known. Simulations indicated that Lynch and Ritland’s (189@)d asimilar
separation between the distributionsa@atedness values for noalatives and relatives as the
two commonly‘used likelihoodstimatorskig. S.2, Supporting Information).

Based on this finding, we then calculated me#&in) among all pairs of individuals
within a given siteGiven the absence of individual demographic data (e.g. carapace width, age)
to provide suppert for putative half- or full- siblings, we did not attempt to identifyngilplairs.
Instead, we identified sites that had a highttvan expected in a randonmdgsociated population.
Significance ofr was tested bpermuting individuals among sites 1,000 times anchitetlating
r after eachsiteration to generate a null distribution foir each sitg€Fig. S.3, Supporting
Information). We then comparedetiobserved of each site to its respective distribution and
obtained aipseud®-value (Pew et al. 2015). Observations of genetic differentiation among
sampling sites.may be associated with pairwise relatedness among individuals within those sites
(Selkoe etal. 2006; lacchei et al. 2013; Pusack et al. 2014). Examining this relatisnship i
important for interpreting results in the context of contemporary ecologicagmes (i.e. kin
aggregation) or multiienerational evolutionary processes (i.e. genkiit) appropriately. Vé
assessed tressociatiorbetween and the mean of pairwigesr estimates for each sibgy

estimating the Pearson’srecelation coefficient
Effective’population size

Effective population sizeé\g) is an important parameter taderstanding genetic
connectivity, as it places genetic variation in the context of microevoluyignacesses (i.e.

adaptation, genetic drift) (Hare 2011, was estimated by computing thieglesample linkage
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346  disequilibrium estimator (Waples and R608) implemented in NeEstimator version 2.01 (Do et
347 al. 2014) for both 2012 and 2014. We excluded low frequency alleles from calculdigbyof

348 choosing a Rritical value of 0.01.
349 Results
350 Analysis.of.genetic variation

351 Severalsites were found to sificantly deviate from HardyVeinberg proportions

352 (HWHP) in either 2012 sites = 9) or 2014N sites = 5), but only Brookings South deviated from
353 HWP in both/years (Table S.4, Supiing Informatior). Loci which deviated from HWP at these

354 sites were_ inconstent, but include€mal02, Cmall4, Cmall8, Cmal7, Cma33, andCma43

355 (Table S.4, Supporting Informatipri s estimates indicated that departures from HWP included
356 both heterozygote excess and deficiency in 2612range: -0.061 — 0.099), though oigtoria

357 North (Fis =0:099,P < 0.001) and Port Orford SouthR;§ = 0.050,P < 0.001) significantly

358 deviated from zero after correcting for multiple teBts.estimates in 2014 again indicated both

359 heterozygote excess and deficien€y fange: -0.055 — 0.111), though no site significantly

360 deviated fromrzero after correcting for multiple tg§iig. 1) (Table S.5, Supporting Informatjon

361 Estimated-null-allele frequencies averaged 1.4% and 1.2% across all loci in 2012 and 2014,

362 respectively, and did not affect global or pairwisg across all markers. Significant linkage

363 disequilibrium=(LD) was found in eight pairs of loci in 2012 and five pairs of loci in 2014, though
364 no locus paiwasin LD across years. Further examination revealed that for most pairs of loci the
365 overall significance of LD could be attributed to a single site havirgaue of zero, and no

366 site-specific pattern of LD was present. Given the inconsistency of observed patterns of LD, these
367 results suggestthat loci used in this study are not physically linked.

368 There was little distinguishable spatial pattern of genetic diversity present among sites or
369 across years. The niner of alleles per locus was variable among sites in both 2012 (NA range:
370 7.3 -13:5)and 2014 (NA range: 6.0 — 13.6), though allelic richness had a much narrower range
371 in both 2012 (AR range: 5.5 — 6.2) and 2014 (AR range: 5.5 — 6.0). Expected hetatpzya®s

372 alsosimilar between years (2012 range: 0.622 — 0.712; 20H.range: 0.637 — 0.71410.1)

373 (Table S.5, Supporting Informatian)
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374  Analysisof population genetic structure
375 AMOVA and pairwise Fsr

376 In 2012, AMOVA indicated that nearly all genetic variation was attributed tatiari

377 among individuals within sampling sites (99.7%). No significant proportion of genetic @ariati
378 was explained.by variance among sampling sites (0P184).067); howevereight pairwise Er

379 estimates were.significant after applying False Discovery Rate corrections. Eel River was
380 significantly differentiated from Buoy 3¢7= 0.010,P < 0.001), GraylandHsr= 0.007,P =

381 0.001), SeaviewHst= 0.007,P < 0.001), and Garibaldi Southdr= 0.009,P < 0.001). Russian
382 River and'Half Moon Bay were both significantly differentiated from Buolys3 £ 0.009,P <

383 0.001;Fsr=10.007,P = 0.001, respectively) and Garibaldi Souta(= 0.010,P < 0.001;Fst =

384 0.008,P <0.001, respectivelyF{g. 2a).Low pairwiseFst estimates are likely due to the inverse
385 relationship between the maximum attaindbie andH. (Meirmans and Hedrick 2011).

386 AMOVA provided evidence for significant regional differentiation in 2012, despdsely
387 accounting,for.a very small proportion of total genetic variance ((P224).001). Pairwis€& st

388 estimatés indicated that North CC was significantly differentiated lid CC st = 0.001,P

389 < 0.001) andsSouth C&§r = 0.002,P < 0.001). South CC was also significantly differentiated
390 from Ft. Bragg Fst = 0.003,P = 0.002). North CC and Mid CC were not significantly

391 differentiated from Ft. Bragd-cr = 0.001; 0.001respectively), and Mid CC was not

392 significantly.differentiated from South CE4; = 0.001) Tablela).

393 In 2014,/ AMOVA indicated that all genetic variation was attributed to variation among
394 individuals'within sampling sites (~100%), and no sites were significantlyelitiated based on
395 pairwise‘comparisonsgr range: -0.014 — 0.0Q04Fig. 2b). Furthermore, there was no evidence
396 of significant pairwise differentiation at the regional level(range: -0.001 — 0.002] &ble1b).

397 Realculating pairwisd-st estimates after resampling the 2012 data set using 2014 sample sizes
398 did not yield much contrast tost estimates based on the full 2012 data set (Fig. S.4, Supporting
399 Information), therefore it is unlikely that intannual variation in estimates of population genetic
400 structue isdueto differences in saple sizes between years.

401  Spatial autocorrelation
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Genetic differentiation (as measured by pairnfige) was significantly cordated with
geographic distance between sampling sites in 2Q12 (.232,P = 0.006). While this
relationship was significant using all sites together, it was not significant for every distance class
Sites that'were less than 120 km apart were more similar than expected by chan@d.86,P
=0.001), and sites that were greater than 720 km apart were more differentpbete ey
chance (r =-0.17,P = 0.025). Despite the lack of statistical significance, other distance classes
(121 — 240,,241 — 360, 361 — 480, 481 — 600, and 601 — 720 km) showed a steady increase in
genetic differentiation with increasing geographic distance, indicative ofitsolat distance
(Fig. 3a and3bp(Table S.3, Supporting Information). In 2014, there wasigoificant
correlation between genetic differentiation and geographic distance dtsiesdr, = 0.032,P
= 0.281). Norrelationship emerged after evaluating separate distance classes, though sites
between 481=600 km apart were more different than expected by charc®.089,P =
0.014) Fig. 3a) (Table S.3, Supporting Information).

A partial Mantel test indicated that genetic differentiation among sites was not related to
region membership after accounting for geographic distance between sitesrid@ither 2014
(rm =-0:22270:212P = 0.500; 0.523, respectively). Therefore, sites located within the same
region are more'likely to be genetically similar due to their geographic prgxasibpposed to a

break in gea flow.
Assignment tests

In 2012,.the proportioof correct assignmenis most sitesvas lower or slightly greater
thanwhat would'be expected if assignment wasdom (1/33 = 0.03), but greater in Buoy 3
(0.26), Grayland (0.11), and Jack Ass (0.39). Ft. Bragg had the greatest proportion of correct
assignments (0.58) among regions, likely owing to the greater assignment successJackd a
Ass. North CC, Mid CC, and South CC were near or below raradsignmen(1/4 = 0.25). The
proportion of earrect assignments among sites was similar in 2014, with Se@vigyy (
Cranberry(0.15), and Astoria South (0.15) have the greatest proportion of individuals correctly
assignedAssignment success increased for North CC (0.55), likely due to higher proportions of
correct assignments in Seaview, Cranberry, and Astoria South. The proportion df correc

assignments for Mid CC, Ft. Bragg, and South CC was approximately random (Table 2). Low
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assignment success among sites and reflioteer supports the finding of very weak genetic
differentiation in 2012 and 2014.

Relatedness

In 2012,7 was significantly greater than expected in nine sites: Astoria Sos&tl0.005,
pseudoR: <.0:001), Garibaldi Southr & 0.004, pseud&-= 0.009), Newport Northr(= 0.003,
pseudoP =0:016), Port Orford Southr € 0.003, pseud® = 0.031), Brookings Northr(=
0.003, pseud® = 0.025), Eel Riverr{= 0.029, pseud®-< 0.001), Russian River & 0.007,
pseudoP =.0.011), Duxbury Reet (= 0.013, pseud&-< 0.001), and Half Moon Bay & 0.015,
pseudoP <0:001). In 2014, the only sites with sigo#ntly greater than expectedvere
Grayland £ = 0.002, pseud&-= 0.032), Garibaldi Southr & 0.007, pseud®-= 0.032), and
Brookings Northt = 0.003, pseud&-= 0.041) Fig. 1) (Table S.5Supporting Information
Note thatr represents mean pairwise calculations among & individuals within each site
including beth-relatives and naefatives and unlike other estimatorsdoes not conform to the
typical 0 —1'scale (i.e. nomelative pairs may attain negative valuég)ereforey is considerably
less than'what would be expected for true bddfings ¢ = 0.25) and fullsiblings ¢ = 0.5)

(Lynch and“Ritland 1999). We also found a significant postoreelationbetweerr and mean
pairwiseFst in both 2012 Pearson’s = 0.70,P < 0.001), suggesting that genetic differentiation
among sités may be in part driven by fine scale genetic structure within sites. This correlation was
also signifieantir2014 (Pearson’s r = 0.3B,= 0.046), though thassociation wavery weak

and likely netsbiologically relevant.
Effectivespopulation size

Basedon the lack of clearly defined genetic structure in either 2012 or 2014, we pooled
all sites inwrespective years to most accurately estiMatéd asingle populationN, estimatesn
2012 and«2014 welarge, and remained relatively consistent across y2a42N. = 29,711,
95% CI = 9,970,— infinity; 2018l = 31,106, 95% CI = 7,642irfinity) (Table 3. The wide
range of 95% confidence intervals indicated that precision of estimates was loWw yedet,
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therefore it is difficult tadetermine whether trud. is large (i.e. thousands) or very large (i.e.
infinite) (Waples and Do 2010).

Discussion
Evidence for strong connectivity and geographically limited gene flow

Ourfirst objective in this study was to establish a baselipgpdlation genetic structure
of Dungeness:¢crab in the California Current System (CCS). Throughout our ~1,200 km study
range, we ‘observed that a substantial amount of the total geaeditton was foundvithin sites
indicating high genetic diversity and relatively weak genetic structure. Prepapusation
genetic studies of Dungeness crab have also found similar le\gdseit diversityin coastal
Oregon (O’Malley et al2017) and British Columbia (Beacham et al. 2008). Our findings are also
comparabletoother marine invertebrates in the GE8r( barnacl8alanus glandula,
Hedgecock1994tkelp basdraralabrax clathratus, Selkoe et al. 2006; California spiny lobster
Panulirus interruptus, lacchei et al. 2013), as well as other crustaspanies with long lived
planktonic larvae (southern rock lobsfesus edwardsii, Thomas and Bell 2010; European spiny
lobsterPalinurus.elephas, Palero et al. 2011). Our observation of weak genetic differentiation
among Sitessisseonsistent withe findings ofO’Malley et al.(2017) along the Oregon coast.
Weak genetic differentiation across broad geographic ranges is also fairlyoocemmong fishes
and invertebrates with planktonic larval stages in the CCS (grass rasiestes rastrelliger,
Buonaccorsi et al. 2004 alifornia musseMytilus californianus, Addison et al. 2008; several
invertebrates, Kelly and Palumbi 2010). Often tinvesak genetic differentiation is attributed to
widely dispersing planktonic larvae, and it is assumed that populations are homogemous. L
proportionssef.correct assignments among sites in both 2012 and 2014 magtb@ecbas
evidence of panmixia. Howerewne caution against thamterpretation sincéhe ability to detect
fine-scale 'structuring using assignment analyses decreases when genetic structure is weak (Jones
and Wang 201 In contrary, we observed a correlati(though not significant coastide)
between increasing genetic differentiation and geographic distance between Z2XE2,
indicating the presence of isolation by distance (IBD) (Wright 1943). This findggests that

in at least somgeneration®ungeness crab maintain a pattefrgene flow that follows
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485 geographically limited dispersal. In this manner, gene flow occurs within spatially restricted
486  ‘neighborhoods’ which are linked together as described by the one dimensional stepping stone
487  model (Kimura and Weiss 1964). However, neighborhoods appear to be continuous as opposed to
488 discrete,thereblacking well defined boundarie$his pattern has been observiedhe CCS

489 among grass rockfistsgbastes rastrelliger) and copper rockfisH caurinus) (Buonaccorsi et al.
490 2002; 2004), s.well asred drum $ciaenops ocellatus) inhabiting estuaries of the northern Gulf
491 of Mexico (Gold et al. 2001)he result isstrong genetic connectivity among Dungeness crab
492  throughout'the '€CS, which is likely achieved by gene flow that occurs over severatigesgra
493  as opposedto broad scale panmixia.

494 In combination with geographically limited gene flow, coancestry among individuals
495  within sites'may contribute to genetic differentiation of Dungeness crab in the\liEfsund

496 that severalssites in both years had higheanrelatednessr than would be expected in a

497 randomly associated population, particularly Eel River, Duxbury Reef and Half MoofinBay

498 2012). This finding is specifically noteworthy since we sampled the adult populatia, is

499  subject tolincreasing admixture over time with successive recruitment dyefugunately, our

500 study desigimits the level of detail we can provide regarding kin aggregation in Dungeness
501 crah though censidering early life history provides some insight to potential mechawisohs

502 would lead to higher than expected relatedness within severaFsitaastance, shelf/slope

503 species of.the CCS, such as Dungeness crab, have evolved specific life history traits such as
504  timing of larval release andngth of pelagic larval duration in order to employ the seasonal

505 change infoceanographic conditions (@ieculation), and thus limit the latitudinal displacement
506 of larvae relative to their parental population (Shanks and Eckert 2005). Granted &tdnks

507 Eckert (2005)-were referring to parental populations at a very coarseesgaleofthern and

508 southern CCS), evidencéisolation by distance anglatedness within several sisggestshat

509 local recruitment may occur to some degree on a smaller Hdaaléess likely thatherelatedness
510 found in this study is driven by sweepstakes reproductive success, which is typitaigdoby

511 chaotic 'genetic patchiness or otherwise unpatterned population genetic structlreenged

512 here (Christie et al. 2010; Hedgecock and Pudovkin 2011). Laslyossible thatohesive

513 dispersal of kin throughout the planktoitacval phase could reduh relatedness in the adult

514 population, though this would be somewhat remarkable, givetirajeness crab larvésave
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the continental shelf and return inshore over a roughly four month period. Turbulemosifd
and swell would likely diffuse kin; however, this behavior has been hypothesized with
compelling evidence in other species having lengthy PkBlp (bas$aralabrax clathratus,
Selkoe etal2006vliry's demoiselleNeopomacentrus miryae, BenTzvi et al. 2012; domino
damselfishDascyllus trimaculatus, Bernardi et al. 201Zalifornia spiny lobstePanulirus
interruptus, lacchel et al. 203 3plitnose rockfist&ebastes diploproa, Ottman et al. 2016). Future
studies could assess demographic processes of larvae (e.(dispesasal trajectory, mortajit
rate, interactiomwith finescale oceanographic conditions), as well as genetic variation within and
among settlement cohottts better understand how early life history characteristics contribute to
possible kin aggregation of Dungeness crab in the CCS.

Regional genetic structure in the CCS has been observed in roclSebases spp.
(Cope 2004GoemezUIchia and Banks 2005, Johansson et al. 2008, Hess 2011), and a variety of
rocky intertidal species (Kelly ancaRimbi 2010; Sander and Palumbi 2011). In our study,
regional genetic.structure only accounted for a very small proportion of the togticge
variation, and was found to covary with geographic distance between sampling ssiganfent
successvas-foundo be greater than would be expected if assignment were random within Ft.
Bragg in 2012-and North CC in 2014, but these assignment successes were likely driven by the
greater assignment successes of few sites within those ragasexl on these findings appears
that the topographical features we used to define regions (Cape Blanco, Capeiie oot
Point Arena) do not represent genetic breaks for Dungeness crab. Instead, cudeesortistrate
subtle shifts in allele frequencies over a broad rdhgewould result from geographically

limited genesflow.
Inter-annual vambility in genetic connectivity

Our second objective in this study was to evaluate inter-annual variability in populat
genetic structureBoth years were characterized by weakeji differentiation, but pairwisesir
estimatessamong sites in 2014 were noticeably lower than in 2012, wathdemce of IBD.
There were alstewer sites having significantly high mean relatedme&914 than 2012\Ve
hypothesize that inteannual variability irpopulation genetic structurg in part driven by

oceanographic conditions which may influence larval disperbalrelationship between
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544  carapace width and molt increméné. a proxy for age) (Roegner unpublished data) for crab
545 sampled in Washington provides a crude approximation for the recruitment cohorts jpréssnt
546 study. These data suggésatcrab sampled in 2012 completed their larval phase in 2008, 2009,
547 or 2010,"andthose sampled in 20ikély did so in 2010, 2011, or 2012. Based on oceanographic
548 measurements withitmoseyearsthe 2008, 2009, and 2014rval cohortsvould have

549 experiencedlifferent physical conditions in the CCS compared to the 2010, 2011, and 2012
550 larval cohorts. For exang Pacific Decadal Oscillation (PDO) entered a brief positive (El Nifio)
551 phase during lat@009, lasting until mie2010 (Bjorkstedt et al. 2010frig. 4a). During El Nifio

552 events the flow of the California Current weakens, ad resulthere is likelyless southward

553 larval advection (Shanks 2013). Unfortunately, it is difficult to hypothesize on how the 2009-
554 2010 El Nifievevent influenced gene flow, since the cohort that underwent its lageatisting

555 that periodwis'probably represented in bsdimplhng years in some proportion. Timing of the

556  spring transition between 2010 and 2012 (measured by the method of Shanks and Roegner 2007)
557 was late relative to other yeafsd. 4b), and coincided with a decrease in the amount of

558 upwelling during the spring and summer, which reached a minimum in 2011 (upwelling index
559 data wassdoewnloaded from http://www.pfeg.noaa.gov/pfel) (Fig.The sping transition marks
560 theseasonal switch topwelling favorable winds, which are thought to play a rokaén

561 advection of megalopae back on to the continental,shibffre they are transported to the

562 nearshore.via internéidles(Shanks 2013}t is possible that delayed spring transition and less
563 upwelling during the spring and summer may have contributed to incréigpedsaby

564 prolonging latitudinal transpoit the California Currentas well as reduced overall rec¢raent)

565 As a resultpdisplacement lairval cohorts between 2010 and 2012 may have been further from
566 points ofdarvalrelease than in other years. This hypothesis is consisteritenilck of IBD and

567 fewer sites having significantly high mean relatedme&914, as compared to 2012. It is

568 important to note, however, that the degree of temporal variation in physical oceanographic
569 conditions can.be variable throughout the CCS, and the effect of such variaaonabn

570 trajectoriegnay not be ubiquitous coast widductuation in dispersal trajectohas also been

571 hypothesized to influence inter-annual variation in population genetic structureyreotadrig

572  shore clingfish l(epadogaster lepadogaster) (Klein et al. 2016long the Iberian Peninsula. This
573 has also been observed among turBett{a maxima) in the Baltic Sea (Florin and Hoglund
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2007) and bicolor damselfisBtégates patitus) in theMesoamerican Barrier Reef System (Hogan
et al. 2010).

Effective population size

Estimates of effective population si2é.J wereimprecise in both years, though we can
nevertheless conclude that tidemust bdarge Genetic methods for estimatiig lose
precision as the signal of genetic drift becomes clouded by background noise (i.e. inherent
sources ofserror, caused by sampling design, marker choice, violation of statssticaptions)
(Waples and=Do 2010), which is common in genetic estimatdsghb gene flow species (Waples
1998).1t is therefore difficult to differentiate between a tigthat is large (i.e. thousands) or
very large«(ie=tens of thousands) (Waples and Do 2010). A similar finding was reportesl for t
commercially-harvestedestern rock lobstePgnulirus cygnus), also owing to the effect of the
low signal(to noise ratio (Kennington et al. 2013). Estimaip@ased on sibship frequency may
provide a more precise calculationMf (Wang 2009). However, due to the complex,
polygamous mating system of Dungeness crab (Worton et al. 2010; Jensen and Bentzen 2012),
sibling relationships amnore complex, which downwardly besestimates oNe when trueNe
is large(Wang 2009; Wang 2016). Thoudh estimates appear to be largentinued monitoring
of Ne may still'be warrantedsintensecommercial harvest can result in a loss of genetic diversity

(i.e. reduction i) even when the census population size is large (Hauser et al. 2002).

Conclusions

In this study, we have provided the most detailed assessment of genetic cogrgdctivit
Dungeness crab to date. Based on genetic data collected in 2012, our findings suggest that
Dungeness.erafireat least weaklgeographically limited in dispersagsuting in a long,
continuous gradient of genetic differentiation over our ~1,200 km study range. In 2014, no spatial
pattern was present and our results provided greater support for broad scalesp&ums
dispersali"and for that matter gene flow, gephbieally restricted in the CCS? The answer likely
depends on the'generation in question. Dungeness crab larvae are known to be accomplished
swimmers relative to other planktonic organisms (Fernandez 1994; Rasmuson rsksl28d).

However, they are limitéby the duration of their larval development, and influenced by physical
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oceanographic conditions such as currents and winds (i.e. both northward and southward
advection). It is well documented that many marine organisms do not reach the fuialisper
potential that is suggested by their pelagic larval duration (Cowen et al. 2008s2089), and
Dungenéss'crab are likely no exception. Since Dungeness crab life history may employ physica
oceanographic processes to limit the latitudinal displaceméatvafe (Shanks and Eckert 2005),

it is possible that variation in those processes may promote eigpaErsal (and thus gene flow).
Dungeness.crab dispersal and gene flow is likely geographically limited, though the extent of
limitation may vary depending on oceanographic conditions which influence larval transport.
Therefore, both locakcruitmentand large scale dispersal may play distinct roles in shaping
genetic conngivity of this species, as iflein et al.(2016).

Overallyjour results show that populations of coastal marine organisms are capable of
undergoingstemporal changes in population genetic structure over short time periods. Bwven wit
the short time span of two years, we observed measurable differences in population genet
structure that were preceded by a brief change in oceanographic conditions. Our finglrays s
that ampling at multiple time points augments the study of genetic connectivity of marine
organismsyassinter-annual variability in population gerstucture may reveal important
biological processes that may have otherwise gone unnoticed (e.g. ephemera pagenetic
structure). This study also further demonstrates that evidence of local populatito sfemeture
(e.g. IBD, relatedness) kde observed among a large scale pattern of genetic homogeneity,
which would not have been feasible without sampling a broad study range and employing fine-
scale sampling desigBince there are several commonalities in life history traits of shelf/slope
species in the=€CS (Shanks and Eckert 2005), our findings are likely applicable t0@#e
speciessbeyond:Dungeness ciaken though we now have a greater understanding of genetic
connectivity for this species, we can only hypothesize about the derhmgpapcesses that
regulate gene flow (e.g. dispers&jiture studies that examitegval dispersalrajectoryof
Dungeness cralarvaecould be used to test our hypotheses regarding geographically limited
dispersaly,and provide greater detail on how connectivity changes with varying oceaiom®ndit
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Figure 1. Map of the 33 sites sampled during the 2012 and 2018tate PreSeason Test Fishery in Washington, Oregon, and
Californiaand summary statistics based on variation at ten microsatellitSltes were subdivided into four regions: North CC,
Mid CC;"Ft. Bragg, and South CC, based on three topographical features including Cape Blpaddefdocino, and Point
Arena..CHD and CHH were only sampled in 2012. Summary statistics include the nurmuoividtials genotyped\), number

of alleles per locus (NA) (smallelst= 10), allelic richness (AR), expected heterozygodity) (inbreeding coefficientHs), and
mean pairwise relatedness)(SignificantF s values after applying FDR corrections (oo = 0.05) and 7 values greater than

expected.(pseudB < 0.05) are denoted (*).
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Table 1. Pairwise k1 estimates based on variation at ten microsatellite loci among the four
regions in (a) 2012 and (b) 2014. Significant values after applying False Discovery Rate
corrections are denoted (Fst estimates based on a sample size less than 50 individuals per site
are italicized:

Mid CC Ft. Bragg South CC

(a)

North CC  0.001*  0.001 0.002*
Mid CC 0.001 0.001
Fort Bragg 0.003*
(b)

North CC  0.000 0.000 0.000
Mid CC -0.001 0.000
Ft. Bragg 0.002
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Table 2. Proportion of individuals correctly assigned to &hsite or b)region in which they
were sampled based tre expected frequenof an individual’'s genotypwithin a location
(Rannala and Mountain 1997; Paetkau et al. 2004).

Prop. Correctly Assigne

Site 2012 2014
a) WND 0.00 0.02
WNK 0.00 0.02
WNR 0.00 0.03
WWB 0.26 0.01
WWG 0.11 0.00
WWW 0.08 0.05
WLP 0.04 0.02
WLS 0.00 0.18
WLC 0.01 0.15
OAN 0.01 0.01
OAS 0.01 0.15
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OGN 0.00 0.03

OGS 0.00 0.00
ONN 0.00 0.00
ONS 0.01 0.00
OCN 0.03 0.03
OCS 0.00 0.00
OPN 0.01 0.05
OPS 0.05 0.03
OBN 0.02 0.02
OBS 0.02 0.05
CCK 0.00 0.04
CCSs 0.00 0.02
CTL 0.00 0.00
CTT 0.00 0.05
CEL 0.00 0.00
CEE 0.00 0.00
CFJ 0.39 0.00
CFU 0.00 0.00
CBR 0.05 0.00
CBP 0.00 0.00
CHD 0.07
CHH 0.04

b) North CC 0.27 0.55
Mid CC 0.22 0.21
Ft. Bragg 0.58 0.22
South CC 0.17 0.22

Table 3. Estimates of effective population si:} and range of 95% confidence intervals for
each region using the Waples and Do (2008) single-sample linkage disequilibribod mith a
P-critical value of 0.01 for (a) 2012 and (b) 2014.
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Year Ngestimate 95% Confidence Interval

2012 29,711 9,970 —infinity
2014 31,106 7,642 —infinity
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